3.1.7. Authentication With a Windows Domain

As you might have noticed you need to make a username/password entry in the passwd file for each user separately. And if (for security reasons) you want your users to periodically change their passwords you have to make the change manually.

But there's a solution for that problem - at least if you're accessing the repository from inside a LAN with a windows domain controller: mod_auth_sspi!

The original SSPI module was offered by Syneapps including sourcecode. But the development for it has been stopped. But don't despair, the community has picked it up and improved it. It has a new home on SourceForge .

· Download the module, copy the file mod_auth_sspi.so into the Apache modules folder.

· Edit the Apache config file: add the line

· LoadModule sspi_auth_module modules/mod_auth_sspi.so

to the LoadModule's section. Make sure you insert this line before the line

LoadModule auth_module modules/mod_auth.so

· To make the Subversion location use this type of authentication you have to change the line

· AuthType Basic

to

AuthType SSPI

also you need to add

SSPIAuth On

SSPIAuthoritative On

SSPIDomain <domaincontroller>

SSPIOfferBasic On

within the <Location /svn> block. If you don't have a domain controller, leave the name of the domain control as <domaincontroller>.

Note that if you are authenticating using SSPI, then you don't need the AuthUserFile line to define a password file any more. Apache authenticates your username and password against your windows domain instead. You will need to update the users list in your svnaccessfile to reference DOMAIN\username as well.
	Chapter 3. Setting Up A Server

	Prev
	
	 Next

Chapter 3. Setting Up A Server

Table of Contents
3.1. Apache Based Server

3.1.1. Introduction

3.1.2. Installing Apache

3.1.3. Installing Subversion

3.1.4. Configuration

3.1.5. Multiple Repositories

3.1.6. Path-Based Authorization

3.1.7. Authentication With a Windows Domain

3.1.8. Multiple Authentication Sources

3.1.9. Securing the server with SSL
3.2. Svnserve Based Server

3.2.1. Introduction

3.2.2. Installing svnserve

3.2.3. Running svnserve

3.2.3.1. Run svnserve as a Service
3.2.4. Authentication with svnserve

3.2.5. Authentication with svn+ssh

3.2.6. Path-based Authorization with svnserve
To use TortoiseSVN (or any other Subversion client), you need a place where your repositories are located. You can either store your repositories locally and access them using the file:// protocol or you can place them on a server and access them with the http:// or svn:// protocols. The two server protocols can also be encrypted. You use https:// or svn+ssh://. This chapter shows you step by step on how you can set up such a server on a Windows machine.

If you don't have a server and/or if you only work alone then local repositories are probably your best choice. You can skip this chapter and go directly to Chapter 4, The Repository.

3.1. Apache Based Server

3.1.1. Introduction

The most flexible of all possible server setups for Subversion is the Apache based one. Although a bit more complicated to set up, it offers benefits that other servers cannot:

WebDAV

The Apache based Subversion server uses the WebDAV protocol which is supported by many other programs as well. You could e.g. mount such a repository as a "Webfolder" in the Windows explorer and then access it like any other folder in the filesystem

Browsing The Repository

You can point your browser to the URL of your repository and browse the contents of it without having a Subversion client installed. This gives access to your data to a much wider circle of users.

Authentication

You can use any authentication mechanism Apache supports, including SSPI and LDAP.

Security

Since Apache is very stable and secure, you automatically get the same security for your repository. This includes SSL encryption.

3.1.2. Installing Apache

The first thing you need before installing Apache is a computer with either Windows2000 / WinXP+SP1 or Windows2003.

	[image: image1]
	Warning

	
	Please note that Windows XP without the servicepack 1 will lead to bogus network data and could therefore corrupt your repository!

1. Download the latest version of the Apache webserver from http://httpd.apache.org/download.cgi . Make sure that you download the version > 2.0.54 - the version 1.3.xx won't work! Also, versions lower than 2.0.54 won't work with Subversion 1.2 because of a bug in how Apache < 2.0.54 was built for Windows.

2. Once you have the Apache2 installer you can doubleclick on it and it will guide you through the installation process. Make sure that you enter the server-URL correctly (if you don't have a dns name for your server just enter the ip-address). I recommend to install apache for All Users, on Port 80, as a Service. Note: if you already have IIS or any other program running which listens on port 80 the installation might fail. If that happens, go to the programs directory, \Apache Group\Apache2\conf and locate the file httpd.conf. Edit that file so that Listen 80 is changed to a free port, e.g. Listen 81. Then restart the installation - this time it should finish without problems.

3. Now test if the Apache-webserver is running correctly by pointing your webbrowser to http://localhost/ - a preconfigured Website should show up.

	[image: image2]
	Caution

	
	If you decide to install Apache as a service, be warned that by default it will run as the local system account. It would be a more secure practice for you to create a separate account for Apache to run as.

Make sure that the account on the server that Apache is running as has an explicit entry in the repository directory's access control list (right-click directory | properties | security), with full control. Otherwise, users will not be able to commit their changes.

Even if Apache runs as local system, you still need such an entry (which will be the SYSTEM account in this case).

If Apache does not have this permission set up, your users will get "Access denied" error messages, which show up in the Apache error log as error 500.

3.1.3. Installing Subversion

1. Download the latest version of Subversion from http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91 .

2. Run the Subversion installer and follow the instructions. If the Subversion installer recognized that you've installed Apache, then you're almost done. If it couldn't find an Apache server then you have to do some additional steps.

3. Using the windows explorer, go to the installation directory of Subversion (usually c:\program files\Subversion) and find the files /httpd/mod_dav_svn.so and mod_authz_svn.so. Copy these files to the Apache modules directory (usually c:\program files\apache group\apache2\modules).

4. Copy the file /bin/libdb43.dll from the Subversion installation directory to the Apache modules directory.

5. Edit Apache's configuration file (usually C:\Program Files\Apache Group\Apache2\conf\httpd.conf) with a text editor such as Notepad and make the following changes:

Uncomment (remove the '#' mark) the following lines:

#LoadModule dav_fs_module modules/mod_dav_fs.so

#LoadModule dav_module modules/mod_dav.so

Add the following two lines to the end of the LoadModule section.

LoadModule dav_svn_module modules/mod_dav_svn.so

LoadModule authz_svn_module modules/mod_authz_svn.so

3.1.4. Configuration

Now you have set up Apache and Subversion, but Apache doesn't know how to handle Subversion clients like TortoiseSVN yet. To get Apache to know which URL shall be used for Subversion repositories you have to edit the Apache config file (usually located in c:\program files\apache group\apache2\conf\httpd.conf) with any text editor you like (e.g. Notepad):

1. At the end of the Config file add the following lines:

2. <Location /svn>

3. DAV svn

4. SVNListParentPath on

5. SVNParentPath D:\SVN

6. AuthType Basic

7. AuthName "Subversion repositories"

8. AuthUserFile passwd

9. #AuthzSVNAccessFile svnaccessfile

10. Require valid-user

11. </Location>

This configures Apache so that all your Subversion repositories are physically located below D:\SVN. The repositories are served to the outside world from the URL: http://MyServer/svn/ . Access is restricted to known users/passwords listed in the passwd file.

12. To create the passwd file, open the command prompt (DOS-Box) again, change to the apache2 folder (usually c:\program files\apache group\apache2) and create the file by entering

13. bin\htpasswd -c passwd <username>

This will create a file with the name passwd which is used for authentication. Additional users can be added with

bin\htpasswd passwd <username>

14. Restart the Apache service again.

15. Point your browser to http://MyServer/svn/MyNewRepository (where MyNewRepository is the name of the Subversion repository you created before). If all went well you should be prompted for a username and password, then you can see the contents of your repository.

A short explanation of what you just entered:

Table 3.1. Apache httpd.conf Settings
	Setting
	Explanation

	<Location /svn>
	means that the Subversion repositories are available from the URL http://MyServer/svn/

	DAV svn
	tells Apache which module will be responsible to serve that URL - in this case the Subversion module.

	SVNListParentPath on
	For Subversion version 1.3 and higher, this directive enables listing all the available repositories under SVNParentPath.

	SVNParentPath D:\SVN
	tells Subversion to look for repositories below D:\SVN

	AuthType Basic
	is to activate basic authentication, i.e. Username/password

	AuthName "Subversion repositories"
	is used as an information whenever an authentication dialog pops up to tell the user what the authentication is for

	AuthUserFile passwd
	specifies which password file to use for authentication

	AuthzSVNAccessFile
	Location of the Access file for paths inside a Subversion repository

	Require valid-user
	specifies that only users who entered a correct username/password are allowed to access the URL

But that's just an example. There are many, many more possibilities of what you can do with the Apache webserver.

· If you want your repository to have read access for everyone but write access only for specific users you can change the line

· Require valid-user

to

<LimitExcept GET PROPFIND OPTIONS REPORT>

Require valid-user

</LimitExcept>

· Using a passwd file limits and grants access to all of your repositories as a unit. If you want more control over which users have access to each folder inside a repository you can uncomment the line

· #AuthzSVNAccessFile svnaccessfile

and create a Subversion access file. Apache will make sure that only valid users are able to access your /svn location, and will then pass the username to Subversion's AuthzSVNAccessFile module so that it can enforce more granular access based upon rules listed in the Subversion access file. Note that paths are specified either as repos:path or simply path. If you don't specify a particular repository, that access rule will apply to all repositories under SVNParentPath. The format of the authorization-policy file used by mod_authz_svn is described in Section 3.1.6, “Path-Based Authorization”

3.1.5. Multiple Repositories

If you used the SVNParentPath directive then you don't have to change the Apache config file everytime you add a new Subversion repository. Simply create the new repository under the same location as the first repository and you're done! In my company I have direct access to that specific folder on the server via SMB (normal windows file access). So I just create a new folder there, run the TortoiseSVN command TortoiseSVN → Create repository here... and a new project has a home...

If you are using Subversion 1.3 or later, you can use the SVNListParentPath on directive to allow Apache to produce a listing of all available projects if you point your browser at the parent path rather than at a specific repository.

If your Subversion server is earlier than 1.3 you will just get a nasty error page showing. To get a nice looking listing of all available projects instead, you can use the following PHP script which generates the index for you automatically. (You will need to install PHP on your server in order to use the script shown below).

<html>

<head>

<title>Subversion Repositories</title>

</head>

<body>

<h2>Subversion Repositories</h2>

<p>

<?php

 $svnparentpath = "C:/svn";

 $svnparenturl = "/svn";

 $dh = opendir($svnparentpath);

 if($dh) {

 while($dir = readdir($dh)) {

 $svndir = $svnparentpath . "/" . $dir;

 $svndbdir = $svndir . "/db";

 $svnfstypefile = $svndbdir . "/fs-type";

 if(is_dir($svndir) && is_dir($svndbdir)) {

 echo "<a href=\"" . $svnparenturl . "/" .

 $dir . "\">" . $dir . "\n";

 if(file_exists($svnfstypefile)) {

 $handle = fopen ("$svnfstypefile", "r");

 $buffer = fgets($handle, 4096);

 fclose($handle);

 $buffer = chop($buffer);

 if(strcmp($buffer, "fsfs")==0) {

 echo " (FSFS)
\n";

 } else {

 echo " (BDB)
\n";

 }

 } else {

 echo " (BDB)
\n";

 }

 }

 }

 closedir($dh);

 }

?>

</p>

</body>

</html>

Save the lines above to a file svn_index.php and store that file in your web root folder. Next you have to tell Apache to show that page instead of the error:

· Uncomment (remove the '#' char) from the following line in your Apache config file:

· #LoadModule rewrite_module modules/mod_rewrite.so

· Add the following lines just below your <Location> block where you define your Subversion stuff:

· RewriteEngine on

· RewriteRule ^/svn$ /svn_index.php [PT]

· RewriteRule ^/svn/$ /svn_index.php [PT]

· RewriteRule ^/svn/index.html$ /svn_index.php [PT]

3.1.6. Path-Based Authorization

The mod_authz_svn module permits fine-grained control of access permissions based on usernames and repository paths. This is available with the Apache server, and as of Subversion 1.3 it is available with svnserve as well.

An example file would look like this:

[groups]

admin = john, kate

devteam1 = john, rachel, sally

devteam2 = kate, peter, mark

docs = bob, jane, mike

training = zak

Default access rule for ALL repositories

Everyone can read, admins can write, Dan German is excluded.

[/]

* = r

@admin = rw

dangerman =

Allow developers complete access to their project repos

[proj1:/]

@devteam1 = rw

[proj2:/]

@devteam2 = rw

[bigproj:/]

@devteam1 = rw

@devteam2 = rw

trevor = rw

Give the doc people write access to all the docs folders

[/trunk/doc]

@docs = rw

Give trainees write access in the training repository only

[TrainingRepos:/]

@training = rw

Note that checking every path can be an expensive operation, particularly in the case of the revision log. The server checks every changed path in each revision and checks it for readability, which can be time-consuming on revisions which affect large numbers of files.

Authentication and authorizarion are separate processes. If a user wants to gain access to a repository path, she has to meet both, the usual authentication requirements and the authorization requirements of the access file.

3.1.7. Authentication With a Windows Domain

As you might have noticed you need to make a username/password entry in the passwd file for each user separately. And if (for security reasons) you want your users to periodically change their passwords you have to make the change manually.

But there's a solution for that problem - at least if you're accessing the repository from inside a LAN with a windows domain controller: mod_auth_sspi!

The original SSPI module was offered by Syneapps including sourcecode. But the development for it has been stopped. But don't despair, the community has picked it up and improved it. It has a new home on SourceForge .

· Download the module, copy the file mod_auth_sspi.so into the Apache modules folder.

· Edit the Apache config file: add the line

· LoadModule sspi_auth_module modules/mod_auth_sspi.so

to the LoadModule's section. Make sure you insert this line before the line

LoadModule auth_module modules/mod_auth.so

· To make the Subversion location use this type of authentication you have to change the line

· AuthType Basic

to

AuthType SSPI

also you need to add

SSPIAuth On

SSPIAuthoritative On

SSPIDomain <domaincontroller>

SSPIOfferBasic On

within the <Location /svn> block. If you don't have a domain controller, leave the name of the domain control as <domaincontroller>.

Note that if you are authenticating using SSPI, then you don't need the AuthUserFile line to define a password file any more. Apache authenticates your username and password against your windows domain instead. You will need to update the users list in your svnaccessfile to reference DOMAIN\username as well.

	[image: image3]
	Tip

	
	Subversion AuthzSVNAccessFile files are case sensitive in regard to user names ("JUser" is different from "juser").

In Microsoft's world, Windows domains and usernames are not case sensitive. Even so, some network administrators like to create user accounts in CamelCase (e.g. "JUser").

This difference can bite you when using SSPI authentication as the windows domain and user names are passed to Subversion in the same case as the user types them in at the prompt. Internet Explorer often passes the username to Apache automatically using whatever case the account was created with.

The end result is that you may need at least two entries in your AuthzSVNAccessFile for each user -- a lowercase entry and an entry in the same case that Internet Explorer passes to Apache. You will also need to train your users to also type in their credentials using lower case when accessing repositories via TortoiseSVN.

Apache's Error and Access logs are your best friend in deciphering problems such as these as they will help you determine the username string passed onto Subversion's AuthzSVNAccessFile module. You may need to experiment with the exact format of the user string in the svnaccessfile (e.g. DOMAIN\user vs. DOMAIN//user) in order to get everything working.

	[image: image4]
	SSL and InternetExplorer

	
	If you're securing your server with SSL and use authentication against a windows domain you will encounter that browsing the repository with the Internet Explorer doesn't work anymore. Don't worry - this is only the Internet Explorer not able to authenticate. Other browsers don't have that problem and TortoiseSVN and any other Subversion client are still able to authenticate.

If you still want to use IE to browse the repository you can either:

· define a separate <Location /path> directive in the apache config file, and add the SSPIBasicPreferred On. This will allow IE to authenticate again, but other browsers and Subversion won't be able to authenticate against that location.

· Offer browsing with unencrypted authentication (without SSL) too. Strangely IE doesn't have any problems with authenticating if the connection is not secured with SSL.

· In the ssl "standard" setup there's often the following statement in apache's virtual ssl host:

· SetEnvIf User-Agent ".*MSIE.*" \

· nokeepalive ssl-unclean-shutdown \

· downgrade-1.0 force-response-1.0

There are (were?) good reasons for this configuration, see http://www.modssl.org/docs/2.8/ssl_faq.html#ToC49 But if you want ntlm authentication you have to use keepalive: http://www.microsoft.com/resources/documentation/WindowsServ/2003/standard/proddocs/en-us/qos_enablekeepalives.asp If You uncomment the whole "SetEnvIf" You should be able to authenticate IE with windows authentication over SSL against the apache on Win32 with included mod_auth_sspi.

3.1.8. Multiple Authentication Sources

It is also possible to have more than one authentication source for your Subversion repository. To do this, you need to make each authentication type non-authoritative, so that Apache will check multiple sources for a matching username/password.

A common scenario is to use both Windows domain authentication and a passwd file, so that you can provide SVN access to users who don't have a Windows domain login.

· To enable both Windows domain and passwd file authentication, add the following entries within the <Location> block of your Apache config file:

· AuthAthoritative Off

· SSPIAuthoritative Off

Here is an example of the full Apache configuration for combined Windows domain & passwd file authentication:

<Location /svn>

DAV svn

SVNListParentPath on

SVNParentPath D:\SVN

AuthName "Subversion repositories"

AuthzSVNAccessFile svnaccessfile.txt

NT Domain Logins.

AuthType SSPI

SSPIAuth On

SSPIAuthoritative On

SSPIDomain <domaincontroller>

SSPIOfferBasic On

Htpasswd Logins.

AuthType Basic

AuthAuthoritative Off

AuthUserFile passwd

Require valid-user

</Location>

3.1.9. Securing the server with SSL

The apache server doesn't have SSL support installed by default due to US-export restrictions. But you can easily download the required module from somewhere else and install it yourself.

1. First you need the required files to enable SSL. You can find those in the package available at http://hunter.campbus.com/ . Just unzip the package and then copy mod_ssl.so to the modules folder of Apache and the file openssl.exe to the bin folder. Also copy the file conf/ssl.conf to the conf folder of Apache.

2. Open the file ssl.conf in the Apache conf folder with a text editor.

3. Place a comment char (#) in front of the following lines:

4. DocumentRoot "c:/apache/htdocs"

5. ServerName www.example.com:443

6. ServerAdmin you@example.com

7. ErrorLog logs/error_log

8. TransferLog logs/access_log

9. change the line

10. SSLCertificateFile conf/ssl.crt/server.crt

to

SSLCertificateFile conf/ssl/my-server.cert

the line

SSLCertificateKeyFile conf/ssl.key/server.key

to

SSLCertificateKeyFile conf/ssl/my-server.key

and the line

SSLMutex file:logs/ssl_mutex

to

SSLMutex default

11. Delete the lines

12. <IfDefine SSL>

and

</IfDefine>

13. Open the Apache config file (httpd.conf) and uncomment the line

14. #LoadModule ssl_module modules/mod_ssl.so

15. Openssl needs a config file. You can download a working one from http://tud.at/programm/openssl.cnf . Save the file to bin/openssl.cnf. Please note: the file has the type *.cnf. Windows treats such files in a special way but it really is just a text file!

16. Next you need to create an SSL certificate. To do that open a command prompt (DOS-Box) and change to the apache folder (e.g. C:\program files\apache group\apache2) and type the following command:

17. bin\openssl req -config bin\openssl.cnf -new -out my-server.csr

You will be asked for a passphrase. Please don't use simple words but whole sentences, e.g. a part of a poem. The longer the phrase the better. Also you have to enter the URL of your server. All other questions are optional but we recommend you fill those in too.

Normally the privkey.pem file is created automatically, but if it isn't you need to type this command to generate it:

bin\openssl genrsa -out privkey.pem 2048

Next type the commands

bin\openssl rsa -in privkey.pem -out my-server.key

and (on one line)

bin\openssl x509 -in my-server.csr -out my-server.cert

 -req -signkey my-server.key -days 4000

This will create a certificate which will expire in 4000 days. And finally enter:

bin\openssl x509 -in my-server.cert -out my-server.der.crt -outform DER

These commands created some files in the Apache folder (my-server.der.crt, my-server.csr, my-server.key, .rnd, privkey.pem, my-server.cert). Copy the files to the folder conf/ssl (e.g. C:\program files\apache group\apache2\conf\ssl) - if this folder does not exist you have to create it first.

18. Restart the apache service.

19. Point your browser to https://servername/svn/project ...

	[image: image5]
	Forcing SSL access

	
	When you've set up SSL to make your repository more secure, you might want to disable the normal access via non-ssl (http) and only allow https access. To do this, you have to add another directive to the Subversion <Location> block: SSLRequireSSL.

An example <Location> block would look like this:

<Location /svn>

DAV svn

SVNParentPath D:\SVN

SSLRequireSSL

AuthType Basic

AuthName "Subversion repositories"

AuthUserFile passwd

#AuthzSVNAccessFile svnaccessfile

Require valid-user

</Location>

	Prev
	
	 Next

	2.4. Summary
	Home
	 3.2. Svnserve Based Server

	3.2. Svnserve Based Server

	Prev
	Chapter 3. Setting Up A Server
	 Next

3.2. Svnserve Based Server

3.2.1. Introduction

There may be situations where it's not possible to use Apache as your server. Fortunately, Subversion includes Svnserve - a lightweight stand-alone server which uses a custom protocol over an ordinary TCP/IP connection.

In most cases svnserve is easier to setup and runs faster than the Apache based server.

3.2.2. Installing svnserve

1. Get the latest version of Subversion from http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91 .

2. If you already have a version of Subversion installed, and svnserve is running, you will need to stop it before continuing.

3. Run the Subversion installer. If you run the installer on your server you can skip step 4.

4. Open the windows-explorer, go to the installation directory of Subversion (usually C:\Program Files\Subversion) and in the bin directory, find the files svnserve.exe, libdb44.dll, libeay32.dll and ssleay32.dll - copy these files into a directory on your server e.g. c:\svnserve

3.2.3. Running svnserve

Now that svnserve is installed, you need it running on your server. The simplest approach is to run the following from a DOS shell or create a windows shortcut:

svnserve.exe --daemon

svnserve will now start waiting for incoming requests on port 3690. The --daemon switch tells svnserve to run as a daemon process, so it will always exist until it is manually terminated.

If you have not yet created a repository, follow the instructions given with the Apache server setup Section 3.1.4, “Configuration”.

To test that svnserve is working, use TortoiseSVN → Repo-Browser to view a repository.

Assuming your repository is located in c:\repos\TestRepo, and your server is called localhost, enter:

svn://localhost/repos/TestRepo

when prompted by the repo browser.

You can also increase security and save time entering Url's with svnserve by using the --root switch to set the root location and restrict access to a specified directory on the server:

svnserve.exe --daemon --root drive:\path\to\repository

Using the previous test as a guide, svnserve would now run as:

svnserve.exe --daemon --root c:\repos

And in TortoiseSVN our repo-browser Url is now shortened to:

svn://localhost/TestRepo

Note that the --root switch is also needed if your repository is located on a different partition or drive than the location of svnserve on your server.

	[image: image6]
	Warning

	
	Do not create or access a Berkeley DB repository on a network share. It cannot exist on a remote filesystem. Not even if you have the network drive mapped to a drive letter. If you attempt to use Berkeley DB on a network share, the results are unpredictable - you may see mysterious errors right away, or it may be months before you discover that your repository database is subtly corrupted.

3.2.3.1. Run svnserve as a Service

If you are concerned about always having a user logged in on your server, or worried about someone shutting down svnserve or forgetting to restart it after a reboot, it is possible to run svnserve as a windows service. Starting with Subversion 1.4, svnserve can be installed as a native windows service, in previous versions it can be installed using a wrapper.

To install svnserve as a native windows service, execute the following command all on one line to create a service which is automatically started when windows starts.

sc create svnserve binpath= "c:\svnserve\svnserve.exe --service

--root c:\repos" displayname= "Subversion" depend= tcpip start= auto

	[image: image7]
	Tip

	
	Microsoft now recommend services to be run as under either the Local Service or Network Service account. Refer to The Services and Service Accounts Security Planning Guide . To create the service under the Local Service account, append the following to the example above.

obj= "NT AUTHORITY\LocalService"

Note that you would have to give the Local Service account appropriate rights to both Subversion and your repositories, as well as any applications which are used by hook scripts.

To install svnserve using a wrapper, one written specifically for svnserve is SvnService. Magnus Norddahl adapted some skeleton code from Microsoft, and further improvements have been made by Daniel Thompson. Daniel's version is available for download from tigris.org .

More generic tools like firedaemon will also work. Note that you will still need to run svnserve with the --daemon switch.

Finally, if you have access to the Windows 2000/XP/2003 resource kit you can use SrvAny from Microsoft. This is the official Microsoft way of running programs as services, but it is a bit messy (requires registry editing) and if you stop the service it will kill svnserve immediately without letting it clean up. If you don't want to install the entire reskit, you can download just the SrvAny components from Daniel Petri .

3.2.4. Authentication with svnserve

The default svnserve setup provides anonymous read-only access. This means that you can use an svn:// Url to checkout and update, or use the repo-browser in TortoiseSVN to view the repository, but you won't be able to commit any changes.

To enable write access to a repository, you need to edit the conf/svnserve.conf file in your repository directory. This file controls the configuration of the svnserve daemon, and also contains useful documentation.

You can enable anonymous write access by simply setting:

[general]

anon-access = write

However, you will not know who has made changes to a repository, as the svn:author property will be empty. You will also be unable to control who makes changes to a repository. This is a somewhat risky setup!

One way to overcome this is to create a password database:

[general]

anon-access = none

auth-access = write

password-db = userfile

Where userfile is a file which exists in the same directory as svnserve.conf. This file can live elsewhere in your filesytem (useful for when you have multiple repositories which require the same access rights) and may be referenced using an absolute path, or a path relative to the conf directory. If you include a path, it must be written /the/unix/way. Using \ or drive letters will not work. The userfile should have a structure of:

[users]

username = password

...

This example would deny all access for unauthenticated (anonymous) users, and give read-write access to users listed in userfile.

	[image: image8]
	Tip

	
	If you maintain multiple repositories using the same password database, the use of an authentication realm will make life easier for users, as TortoiseSVN can cache your credentials so that you only have to enter them once. More information can be found in the Subversion book, specifically in the sections Create a 'users' file and realm and Client Credentials Caching

3.2.5. Authentication with svn+ssh

Another way to authenticate users with a svnserve based server is to use a secure shell (SSH) to tunnel requests through.

With this approach, svnserve is not run as a daemon process, rather, the secure shell starts svnserve for you, running it as the SSH authenticated user. To enable this, you need a secure shell daemon on your server.

It is beyond the scope of this documentation to detail the installation and setup of a secure shell, however you can find further information in the TortoiseSVN FAQ . Search for “SSH”.

Further information about svnserve can be found in the SVN book .

3.2.6. Path-based Authorization with svnserve

Starting with Subversion 1.3, svnserve supports the same mod_authz_svn path-based authorization scheme that is available with the Apache server. You need to edit the conf/svnserve.conf file in your repository directory and add a line referring to your authorization file.

[general]

authz-db = authz

Here, authz is a file you create to define the access permissions. You can use a separate file for each repository, or you can use the same file for several repositories. Read Section 3.1.6, “Path-Based Authorization” for a description of the file format.

	Prev
	Up
	 Next

	Chapter 3. Setting Up A Server
	Home
	 Chapter 4. The Repository

